STEREODYNAMICS OF TERT-BUTYLPHOSPHINE BORANE COMPLEXES. BARRIERS TO TERT-BUTYL ROTATION. STEREOCHEMICAL DEPENDENCE OF ³J_{PCCH} C. Hackett Bushweller¹ and Jacques A. Brunelle²

> Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, U.S.A.

(Received in USA 2 January 1974; received in UK for publication 29 January 1974)

Although there exists a limited amount of information regarding the dynamics of rotation about carbon-phosphorus single bonds in hindered phosphines,³ there is essentially no data regarding the effect of Lewis acid complexation on this rate process. This report concerns the direct observation of slow tert-butyl rotation in tri-tert-butylphosphine borane (1) and di-tert-butylchlorophosphine borane (2) using ¹H dnmr spectroscopy.

Examination of the ¹H dnmr spectrum (60 MHz) of] (0.2M in 60% $CH_2Cl_2/40$ % CD_3OD v/v) at -ll° (Figure) revealed a time-averaged doublet resonance (δ 1.42; ³J_{PCCH} = 11.7 Hz) consistent with rapid tert-butyl rotation on the dnmr time scale. At lower temperatures, the dnmr spectrum undergoes complex

changes giving under conditions of slow exchange two doublet resonances at δ 1.53 (3H; methyl trans to BH₃; ³J_{PCCH} = 9.1 Hz) and 1.36 (6H; two methyls gauche to BH₃; ³J_{PCCH} = 13.0 Hz) consistent with the symmetry experienced by a slowly rotating tert-butyl. Changes in the ¹H dnmr spectrum of 2 (0.1M in 5% CD₃OD/ 60% CH₂CHC1/35% ClFCCF₂ v/v) are also consistent with slowing tert-butyl rotation (Figure). Under conditions of slow, intermediate, and fast rates of

No. 11

tert-butyl rotation in 2, it was found necessary for the purpose of calculating theoretical spectra to employ three different coupling constants and chemical shifts for the tert-butyl methyls at δ 1.39 (3H; methyl gauche to BH₃; ${}^{3}J_{PCCH} =$ 17.4 Hz), 1.38 (3H; methyl trans to BH₃; ${}^{3}J_{PCCH} =$ 11.1 Hz), and 1.23 (3H; methyl gauche to BH₃; ${}^{3}J_{PCCH} =$ 15.4 Hz). Activation parameters derived from total dnmr line shape analysis are compiled in Table I with data for other phosphines.

A perusal of Table I indicates some interesting trends. In comparing rates of tert-butyl rotation in Table I, it is most appropriate to compare the various ΔG^{\ddagger} values which are less subject to systematic errors than ΔH^{\ddagger} and ΔS^{\ddagger} . The barriers (ΔG^{\ddagger}) in (t-Bu)₃P and (t-Bu)₃PBH₃ reveal BH₃ to be significantly more hindering to tert-butyl rotation than a lone pair and comparable to a coordinate covalently bonded sulfur. However, a comparison of (t-Bu)₂ClP and (t-Bu)₂ClPBH₃ indicates that the effect is not additive and in these two compounds the barrier difference is much smaller as compared to (t-Bu)₃P and (t-Bu)₃PBH₃. Although derived from data for only two pairs of compounds, there exists an apparent correlation between complex stability and the effective hindering of rotation by BH₃. Complex 2 would be expected to be less stable than 1 due to the electronegative chlorine and any resultant changes in bond length and/or force constants for bond angle deformation may play a role in determining the effective steric size of BH₃ in the context of retarding rotational processes.

Also compiled in Table II are ${}^{3}J_{PCCH}$ values for 1,2, selected tert-butylphosphines, and $(t-Bu)_{3}PS$. Complexes 1 and 2 are similar to the free phosphines in that ${}^{3}J_{PCCH}(t)$ is smaller than ${}^{3}J_{PCCH}(g)$, although in 1 and 2, the differences between ${}^{3}J_{PCCH}(t)$ and ${}^{3}J_{PCCH}(g)$ are much smaller than in the corresponding free phosphines. In the case of $(t-Bu)_{3}PS$, ${}^{3}J_{PCCH}(t)$ and ${}^{3}J_{PCCH}(g)$ are essentially equal. Such coupling constant data will prove to be useful in subsequent conformational studies and may be developed as a probe into the nature of bonding involving the phosphorus lone pair.

895

 ΔG^{\ddagger} , kcal/mole Compd ΔS^{\ddagger} , gibbs ΔH^{\ddagger} , kcal/mole (temp., °C) 9.0 ± 0.4^{a} 8.6 ± 0.1 (-103) 2 ± 4 $(t-Bu)_3P$ 9.5 ± 0.4^{a} -5 ± 4 $10.5 \pm 0.1 (-72)$ (t-Bu) 3PS 10.0 ± 0.2^{b} -2 ± 2 $10.4 \pm 0.1 (-68)$ (t-Bu) 3PBH3 6.3 ± 0.4^{a} (t-Bu)₂ClP 0 ± 4 $6.3 \pm 0.1 (-149)$ 7.0 ± 0.4^{b} 0 ± 5 6.8 ± 0.1 (-141) (t-Bu) 2ClPBH3 (a) See ref. 3. (b) This work.

 $^1\mathrm{H}{-}^{3\,1}\mathrm{P}$ Spin-Spin Coupling Constants for Methyl Groups in tert-Table II. Butylphosphines and Derivatives

Z Me X Me	Compd	³ J _{PCCH} (t), Hz ^a	³ J _{PCCH} (g), Hz ^b
	X = lone pair, Y = Z = t-Bu	2.4	13.4
	X = S, Y = Z = t-Bu	13.3	14.0
	$\begin{array}{rcl} X &= & BH_3, \\ Y &= & Z &= & t - Bu \end{array}$	9.1	13.0
	X = lone pair, Y = t-Bu, Z = Cl	4.5	15.9, 16.6
	$X = BH_3,$ Y = t-Bu, Z = Cl	11.1	15.4, 17.4
(a)	³ .T for methyl tra	and to Y	

J_{PCCH} for methyl trans to X. (a)

(b) ${}^{3}J_{PCCH}$ for methyls gauche to X.

Acknowledgment: We are grateful to the National Science Foundation (grant no. GP-18197) for support.

REFERENCES

- (1) Alfred P. Sloan Research Fellow, 1971-74; Camille and Henry Dreyfus Teacher-Scholar, 1972-present.
- (2) NDEA Title IV Fellow, 1971-74.
- (3) (a) C. H. Bushweller and J. A. Brunelle, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 5949 (1973);
 (b) J. B. Robert and J. D. Roberts, <u>ibid.</u>, <u>94</u>, 4902 (1972).

Table I.

Activation Parameters for tert-Butyl Rotation